宜春市溶氣氣浮機一體化設備自動運行
控制策略的不足
1、溶解氧控制的難點
污水水質的多變和生物處理系統中生化反應的復雜性,決定了污水處理的溶解氧(DO)檢測控制是一個大滯后系統,檢測出結果再進行參數處理和調整,往往已滯后幾個小時甚至幾天,造成大量不合格水的排出。這種系統的特點是污水生物處理系統的運行管理具有相當的技術難度,要求管理者具有較好的環境工程知識基礎和相當豐富的運行管理經驗。
另外,溶解氧指標并不能直接反映生物反應的氧氣需求量,它只是反映了反應池中氧氣的剩余程度,無法根據它的數值和變化直接計算氣量。
傳統的PID控制雖然在工程上廣泛采用,但只能解決線性系統的調節問題。曝氣系統中PID能夠實現對流量的控制,但對水質處理效果的控制能力有限。溶解氧(DO)控制時,PID參數的整定需要根據季節、水質的變化等實際情況不斷調整。從控制理論的角度來看,污水的生物處理過程具有大滯后、非線性、隨機性和多變量的特點,建立的模型也是經驗的、有條件的,因此,單純依靠理論模型建立的經典控制方法并不能很好地滿足溶解氧(DO)調節的需要,造成鼓風機和閥門調節頻繁、超調量大,使得設備壽命降低、能耗過高。
2、流量控制的重要性
空氣質量流量是直接影響曝氣處理效果的指標,從工程的角度看,諾大的反應池往往需要許多組曝氣設備,包括空氣管路、曝氣頭或曝氣器等,實際運行中,這些設備能否穩定的工作、能否及時地發現和抑制故障,會影響到曝氣過程的穩定和均衡,影響到生物反應效果和電耗。不穩定的流量分布會擾亂溶解氧檢測參數的真實意義,使得本來就容易產生振蕩的溶解氧控制變得更加難以駕御。
曝氣池通常是幾百或幾千平米的流動水池,空氣管路通過總管和支管將壓縮空氣輸送到池底的曝氣設備,比如空氣由A分別輸送到B、C、D、E、F。在曝氣系統設計中,曝氣量應按照需要均勻的分布,實際上,由于管道壓力損失,B位置和F位置的空氣壓力和流量存在差異,當總氣量由于水質或水量變化而調整時,B位置和F位置的壓差和流量差也會發生改變,這會造成曝氣分布的偏差,而且這種偏差也是變化的;另外,在系統進行時,如果某位置(如D)的曝氣設施堵塞或破漏,會造成該位置壓力和流量的改變,同時會引起整個空氣管路的壓力和流量重新分布,其他各點(B、C、E、F)的空氣流量也會相應改變,引起曝氣分布的偏差。上述運行中的曝氣分布不均往往是隱藏性的,水面上很難發現。
曝氣分布不均使得溶解氧更加困難。因為在工程中,溶解氧只能檢測某點(通常是曝氣池出口),不能反映出氧量的分布,溶解氧控制的一個條件是溶解氧值真實地反映曝氣池生物反應的環境狀態,當曝氣分布不均時,這一條件不真實,控制效果也不會理想。
因此,空氣流量的控制是曝氣控制中十分重要的一環,如果在B、C、D、E、F位置安裝流量檢測設備和調節閥門,并建立控制環節,流量偏差就會在運行中被糾正,溶解氧的控制也會更加有效。
宜春市溶氣氣浮機一體化設備自動運行