詳細介紹
西門子模塊6GK7243-5DX30-0XE0
西門子模塊6GK7243-5DX30-0XE0
在一個傳統的單載波系統中,使用10 GSPS轉換器捕捉1 MHz信號似乎很滑稽,但在多載波軟件定義系統中,那可能是設計人員恰恰會做的事情。一個例子是有線機頂盒,其可能采用2.7 GSPS至3 GSPS全頻調諧器來捕捉包含數百電視頻道的有線信號,每個頻道的帶寬為數MHz。對于數據轉換器而言,噪聲頻譜密度的單位通常為dBFS/Hz,即相對于每Hz滿量程的dB。這是一種相對量度,提供了對噪聲電平的某種“折合到輸出端”測量。還有采用dBm/Hz甚至dB mV/Hz為單位來提供更為的量度,即對數據轉換器噪聲的“折合到輸入端”測量。
SNR、滿量程電壓、輸入阻抗和奈奎斯特帶寬也可用來計算ADC的有效噪聲系數,但這涉及到相當復雜的計算,參見ADI公司指南MT-006:“ADC噪聲系數——一個經常被誤解的參數”。
過采樣替代方法
在較高的采樣速率下使用ADC通常意味著較高的功耗——無論是ADC自身抑或后續數字處理。表1顯示過采樣對NSD有好處,但問題依然存在:“過采樣真的值得嗎?”
如表2所示,使用噪聲較低的轉換器也能實現更好的NSD。捕捉多載波的系統需要工作在較高采樣速率下,因此會對每個載波進行過采樣。不過,過采樣仍有很多優勢。
簡化抗混疊濾波——過采樣會將較高頻率的信號(和噪聲)混疊到轉換器的奈奎斯特頻段內.所以為了混疊影響,這些信號需要在AD轉換前被濾波器濾除。這意味著過濾器的過渡帶必須位于高目標捕捉頻率(FIN)和該頻率的混疊(FSAMPLE、FIN)之間。隨著FIN越來越接近FSAMPLE/2,此抗混疊濾波器的過渡帶變得非常窄,需要*階的濾波器。2至4倍過采樣可大幅減少模擬域中的這個限制,并將負擔置于相對容易處理的數字域中。
即便使用完美的抗混疊濾波器,要大程度減少轉換器失真產物折疊的影響也會帶來不足,在ADC中產生雜散和其他失真產物,包括某些*階諧波。這些諧波還將在采樣頻率內折疊,可能返回帶內,限制目標頻段內的SNR。在較高的采樣速率下,所需頻段成為奈奎斯特帶寬的一小部分,因而降低了折疊發生的概率。值得一提的是,過采樣還有助于可能發生帶內折疊的其他系統雜散(比如器件時鐘源)的頻率規劃。
調制增益對任何白噪聲都有影響,包括熱噪聲和量化噪聲,以及來自某些類型時鐘抖動的噪聲。
隨著速度更高的轉換器和數字處理產品的成熟,系統設計人員更頻繁地使用一定量的過采樣以發揮這些優勢,比如噪底和FFT。