通信電纜 網絡設備 無線通信 云計算|大數據 顯示設備 存儲設備 網絡輔助設備 信號傳輸處理 多媒體設備 廣播系統 智慧城市管理系統 其它智慧基建產品
武漢華頂電力設備有限公司
暫無信息 |
西寧市雙路斷路器模擬試驗儀直銷價 HDS-II雙路斷路器模擬試驗儀將兩組相互獨立的模擬斷路器置于同一機箱,可模擬斷路器的三相及分相操作、單跳閘線圈或雙跳閘線圈斷路器、開關自備投試驗以及開關拒跳/拒合等動作行為,適用于電力系統、工礦企業、科
產品簡介
HDS-II雙路斷路器模擬試驗儀將兩組相互獨立的模擬斷路器置于同一機箱,可模擬斷路器的三相及分相操作、單跳閘線圈或雙跳閘線圈斷路器、開關自備投試驗以及開關拒跳/拒合等動作行為,適用于電力系統、工礦企業、科研、教學院所等,作為繼電保護及自動裝置試驗中代替實際斷路器之用。在保障繼電保護試驗的正確性、可靠性的同時,可大幅減少實際斷路器的動作次數,提高整組試驗工作效率。
兩組模擬斷路器均直接提供A、B、C相模擬的跳/合閘線圈輸入端,一對斷路器位置輸出的常閉接點和常開接點。通過面板操作選擇模擬斷路器的手動跳閘/合閘、跳/合閘線圈電阻、跳/合閘時間、單相/分相動作相預置選擇等功能,從而模擬斷路器的跳/合閘動作。
HDS-II雙路斷路器模擬試驗儀提供獨立的110/220V隔離直流電壓輸出。
二.技術指標
1、供電電源:AC220V±10%
2、跳合閘輸入電壓:DC 40V≤ Vin ≤ 250V
3、跳/合閘線圈電阻選擇:100Ω、200Ω、400Ω
4、合閘時間選擇:20ms~180ms,步長20ms(當設置小于20ms時取為20ms)
5、跳閘時間選擇:30ms~90ms,步長10ms(當設置小于30 ms時取為30 ms)
6、常開/常閉輸出接點容量:DC110V/5A,AC220V/30A。
7、提供A相,B相,C相,AB相,BC相,CA相,ABC相等七種分相預置選擇和三相操作選擇。
8、隔離直流電壓輸出:DC 110V/220V,容量200W。
9、工作環境:溫度-10℃~+45℃,濕度90%不冷凝
10、體積:380(W)×250(H)×180(D)mm
11、重量:10Kg
三.使用方法
步驟一:
1、用模擬斷路器做保護整組試驗時,將保護屏上操作回路中的三相跳閘及三相合閘的外部出口斷開后,接入模擬斷路器各相對應的跳/合閘輸入端子,直流操作電源的負端接入模擬斷路器的黑色公共端(-)端子。注意到跳/合閘回路的公共端是獨立分開的。
2、接通220V供電電源。開機后模擬斷路器在“三相跳閘”狀態,位置指示燈綠燈亮。動作預置為“三相”操作。
步驟二:根據一次設備斷路器的跳/合閘時間和跳/合閘線圈的電流值設置和跳/合閘時間模擬斷路器參數:選擇所需模擬斷路器的跳/合閘回路電阻(100Ω、200Ω、400Ω)、跳閘時間(30 ms~90 ms)、合閘時間(20ms或~180 ms)、跳/合閘操作動作相選擇等。
1、跳/合閘線圈輸入端子相當于實際斷路器的跳/合閘線圈回路,跳/合閘線圈電阻通過回路電阻選擇按鍵選擇,儀器通電后跳合閘回路電阻是200Ω。
2、跳閘時間(30 ms~90 ms)步長是10 ms,跳閘時間數碼盤的數字乘以10 ms即是所設置的跳閘時間;合閘時間(20ms~180 ms)步長是20 ms,合閘時間數碼盤的數字乘以20 ms即是所設置的合閘時間。
3、動作相通過動作相選擇按鍵選擇,儀器通電后動作相為三相操作,對應指示燈是三相的亮。每按動一次將按照分相操作ABC相→A相→B相→C相→AB相→BC相→CA相→三相 循環順序選擇動作相,并相應指示燈點亮。
步驟三:面板設置有手動跳/合閘按鈕,模擬斷路器的手動跳閘、合閘。操作時動作相選擇對應的相跳/合閘。模擬斷路器在跳閘狀態時,跳閘指示燈(綠燈)亮。此時模擬斷路器位置開出量的常閉接點閉合,常開接點斷開。
模擬斷路器在合閘狀態時,合閘指示燈(紅燈)亮。此時開出量的常開接點閉合,常閉接點斷開。
步驟四:配合繼點電保護裝置和試驗裝置進行整組試驗。當任意一個跳/合閘回路有電流輸入時,根據預置的動作參數模擬斷路器動作狀態。
動作相選擇為三相操作時,任意一個相的跳/合閘輸入均使三相都動作。分相操作時,各相的跳/合閘輸入導致所選擇的動作相做相應動作,其他相狀態不變。
通過動作相選擇按鈕,選擇非輸入的動作相可模擬開關拒跳、拒合試驗。
更多產品詳情請咨詢武漢華頂電力設備有限公司
泛,1963年英國倫敦的庫伯在理論上對羅格夫斯基線圈的高頻響應進行了分析,奠定了羅格夫斯基線圈在大功率脈沖技術中應用的理論基礎[2]。20世紀中后期以來,國外一些專家學者和公司紛紛對羅氏線圈在電力上的應用進行了大量的研究,并取得了顯著的成果。如法國ALSTHOM公司有一些基于羅氏線圈電流互感器產品問世,其主要研究無源電子式互感器,在20世紀80年英國Rocoil公司實現了羅格夫斯基線圈系列化和產業化。總而言之,在世界范圍內對于羅格夫斯基線圈傳感器的研究,于20世紀60年興起,在80年取得突破性進展,并有多種樣機掛網試運行,90年開始進入實用化階段。尤其進入21世紀以來,微處理機和數字處理器技術的成熟,為研制新型的高頻電流傳感器奠定了基礎。20世紀90年歐洲學者將羅氏線圈應用于局部放電檢測,效果良好,并得到了廣泛應用。例如意大利的博洛尼亞大學的G.C. Montanari和A. Cavallini等人及TECHIMP公司成功研制了高頻局部放電檢測儀,并被廣泛應用。
近幾年國內的一些科研院所和企業均開始研制基于羅氏線圈傳感器以及高頻局放檢測裝置,雖然起步比較晚,有些技術還處于跟蹤國外大公司的水平,但隨著發展羅氏線圈電子式傳感器的時機逐漸成熟,國內如清華大學、西安交通大學、上海交通大學、華北電力大學等對于羅氏線圈傳感器進行了深入的研究和探索,并取得了大量成果 [4]。
高頻局放檢測技術的技術優勢及局限性主要表現在以下幾個方面:
(1)可進行局部放電強度的量化描述。由于高頻局放檢測技術應用高頻電流傳感器,與傳統的脈沖電流法具有類同的檢測原理,若傳感器及信號處理電路相對確定的情況下,可以對被測局部放電的強度進行理化描述,以便于準確評估被檢測電力設備局部放電的絕緣劣化程度。
(2)具有便于攜帶、方便應用、性價比高等優點。高頻電流傳西寧市雙路斷路器模擬試驗儀直銷價感器作為一種常用的傳感器,可以設計成開口CT的安裝方式,在非嵌入方式下能夠實現局放脈沖電流的非接觸式檢測,因此具有便于攜帶、方便應用的特點。
(3)檢測靈敏度較高。高頻電流傳感器一般由環形鐵氧體磁芯構成,鐵氧體配合經磁化處理的陶瓷材料,對于高頻信號具有很高靈敏度。局部放電發生后,放電脈沖電流將沿著接地線的軸向方向傳播,即會在垂直于電流傳播方向的平面上產生磁場,電感型傳感器是從該磁場中耦合放電信號。除此之外利用HFCT進行測量,還具有可校正的優點。
(1)高頻電流傳感器的安裝方式也限制了該檢測技術的應用范圍。由于高頻電流傳感器為開口CT的形式,這就需要被檢測的電力設備的接地線或末屏西寧市雙路斷路器模擬試驗儀直銷價引下線具
您感興趣的產品PRODUCTS YOU ARE INTERESTED IN
智慧城市網 設計制作,未經允許翻錄必究 .? ? ?
請輸入賬號
請輸入密碼
請輸驗證碼
請輸入你感興趣的產品
請簡單描述您的需求
請選擇省份